Simulation and Low velocity impact testing on confined explosives

TNO | Kennis voor zaken

Wim de Klerk – product manager Ammunition Safety

Low velocity impact testing

Overview

- Introduction
- Test set-up and first test series with PBX-N109 (lightly confined)
- Autodyn simulations
- Test series with N109, Comp B and RDX/was/graphite (95/4.5/0.5)
- Summary

Introduction

- Modern Militairy operations put high requirements on Munitions
 - IM requirements (comparable performance),
 - Better performance (e.g. extended range munitions),
 - decreased barrel erosion, temperature independent performance,
 - Multi-mode or scalable functionality for MOUT intervention
 - reliable (# UXO's) and have a long lifetime
- Safety is still one of the most important requirements

Low velocity impact

Influence of shear stress on the initiation; Low velocity impact test simulations

- Ballistic Impact Chamber (BIC)
- Friability (Gas gun experiment)
- Steven impact test
- Spigot intrusion
- Explosive deforming (aimable warhead)
- Relatively low velocities (no Shock initiation) but violent reactions; Why?

Mechanical damage: Simulation of Steven Impact test Locations of stress

7

Summary of shear rate calculation i.c.t. BIC test results

- Friability (no reaction)
- Steven test 50-100 m/s (reaction at ~75 m/s)
- LANL impact test 196 m/s (reaction)
- Explosive deformation:

 with 5 mm explosive (reaction)
 with 4 mm explosive (no reaction, boundary)
 with 3 mm explosive (no reaction)
- BIC test results USA (reaction)

: 4.4 10⁴ **s**⁻¹

: 5 10⁵ s⁻¹, 1.8 10⁵ s⁻¹

: 1.6 10⁶ s⁻¹

- : 1.51 10⁵ **s**⁻¹
- : 1.19 10⁵ **s**-1

: 7.2 10⁴ s⁻¹

TNO Steven impact test

Test set-up with 60 mm gun

Confined explosive

60 mm sabot and 48 mm projectile (1.2 kg)

9

Partly confined PBXN-109, 195 m/s, sphere: no reaction

Experiments with PBXN-109, 201 m/s, Flat : no reaction

Simulation Flat nose, sphere, 205m/s in PBXN-109 low yield strength

12-October-2010

Simulation Flat nose, sphere, 205m/s in PBXN-109 high yield strength

Simulation Flat nose, sphere, 200 m/s in PBXN-109; strain hardening, closed tube: Temperature

New series of experiments

- New test vehicle; confined with steel end-caps
- Improved gun (more reproducible velocity)
- Experiments with projectile with flat nose
 - PBX-N109: no reaction due to binder (no direct contact of crystals, small burning surface)
 - Hexocire (RDX/wax/graphite, 95wt% RDX): reaction due to easy initiation and propagation
 - Comp B? What about melting of TNT?

New test vehicle (hexocire; 95wt% RDX, wax, graphite)

Stevin impact: Hexocire flat impact 164 m/s

Stevin impact: Hexocire flat impact 84 m/s

Stevin impact: Hexocire flat impact 101 m/s

Summary Hexocire

J2734	081215a	Hexocire	164,29	Severe reaction
J2735	081217a	Hexocire	114,29	wrong shot
J2736	081218a	Hexocire	104,24	Severe reaction
J2737	081219a	Hexocire	77,10	no reaction
J2738	081222a	Hexocire	83,85	no reaction
J2739	081222b	Hexocire	100,68	Severe reaction

Response at 101 m/s more violent than 164 m/s

PBX-N109, flat nose, new set-up, 175 m/s

PBX-N109, flat nose, new set-up, 209 m/s

PBX-N109, flat nose, heavily confined, 214 m/s

Composition B at 155 m/s; mild reaction

* Stalen eilinder na het schot met ± 155.5
* Druk in de kruitkamer 244.2 bar.

Composition B at 108 m/s; severe deflagration reaction

Composition B at 97 m/s; no reaction

Summary comp B

Test number	Velocity [m/s]	Reaction
J2827	155	Mild reaction
J2828	122	Deflagration
J2830	108	Fast deflagration /severe reaction
J2831	97	No reaction / indention of cylinder

Response at 108 m/s more violent than 122 m/s

Summary

- 60 mm gun works very well, new test vehicle with end-caps is an improvement
- PBXN-109: no reaction at all
- Hexocire (RDX/wax): reaction around 100 m/s
- Comp B: reaction around 110 m/s
- Binder prevents propagation of the reaction
- Macro-scale model seems to be a good start (initiation, propagation not yet simulated)
- Implementation of propagation reaction needed, but question remains: what is influence on meso scale processes (crystal shear)
- Solution of localised share in bulk: combined calculation of macro-meso-micro-scale modelling

Center of Expertise for Ammunition Safety

For further information: Wim de Klerk Product Manager "Ammunition Safety"

TNO-Defence, Security and Safety Business Unit 3 - Location Rijswijk

> P.O.Box 45, 2280 AA Rijswijk The Netherlands

Tel.	: +31 15 284 3580
Mobile	: +31 6 5342 5289
Fax.	: +31 15 284 3970
E-mail	: wim.deklerk@tno.n

30 Low velocity impact testing

Ъ